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TECHNICAL NOTE NO, 1327

WIND ~TUNNEL INVESTIGATION OF THE EFFECT OF POWER
AND FLAPS ON THE STATIC LATERAL CHARACTERISTICS
OF A SINGLE-ENGINE LOW-WING AIRPLANE MODEL
By Vito Tamburello and'Joseph Well

SUMMARY

As part of a comprehensive investigation of the
effect of power, flaps, and wing position on static
stability, tests were made in the Langley 7- by 10-Ffoot
tunnel to determine the lateral-stability characteristics
with and without power of a model of a typical low .
wing single—-engine sirplane with flaps neutral, with a
full-span single slotted flap, and with a full-span double
slotted flap. . .

Power decreased the dihedral effect regardless of
flap condition, and the double-slotted~flap configura—
tion showed the most marked decrease. The usual effect
of power in increasing the directional stability was
also shown. Deflection of the single slotted flap
produced negative dihedral effect, but increased the -
directlonal stability. The effects of deflecting the
double slotted flap were erratic and marked changes in
both effective dihedral and directional stability
occurred, The addition of the tail surfaces always
contributed directional stability and generally produced
positive dihedral effect, . )

INTRODUCTION

Recent trends in aeronautics have been toward the
development of airplanes with increased power and
increased wing loadings, The realization of these
advances, however, has introduced new and serious
problems 1n the stability and control characteristics
of the airplane. Increased engine power has been shown
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to produce large slipstream effects and trim changes,
vhereas increased wing loadings have presented the
problem of obtaining higher 1lift for take-off and
landing without impairing stability and control,

A comprehensive investigation was underteken at
the Langley Laboratory in 1941 to determine the effects
of power, full—-span flaps, and the vertical position of
the wing on the stability and control characteristics of
& model of & typical single-engine airplane, The present
work includes the lateral-stability and control charac—
teristics of the model as a low-wing airplane, The
results of the longitudinal-stebility investigatlon with
the model as a low-wing ailrplane are presented in
reference 1,

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard
NACA coefficients of forces and moments, Rolling-,
yaewing~, and pitching-moment coefficients are given
about the center-of-gravity location shown in figure 1
(26,7 percent of the mean aerodynamic chord), The data
are referred to the stabllity axes, which are a system
of axes having their origin at the center of gravity
and in which the Z-axis is in the plane of symmetry and
perpendicular to the relative wind, the X-axils is in the
Plane of symmetry and perpendicular to the Z-axis, and
the Y-axis is perpendicular %to the plane of symmetry,
The positive directions of the stability axes, of the
angular displacements of the airplane and control
surfaces, and of the hinge moments are shown in figure 2,

Cy, 11ft coefficient (Lift/q3)

Cx longitudinal-force coefficient (X/q8)
Cy lateral-force coefficient (Y/qS)

Cy rolling-moment coefficient (I/qSb)
Cm pitching-moment coefficient (M/qSc!)
Cn yaving-moment coefficient (N/qSb)
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rudder hinge-mcment coefficient, (?r/qbr552>

effective thrust coefficient based on wing area -

<?eff/hs)
torque coefficient <§/pV2D?>

propeller advance-dlameter ratio

propulsive efficiency CieffV/ZﬁﬁQ)

= -7 -

forces along axes, pounds

moments about axes,'pound-feet

rudder hinge moment, pound-feet
propeller effective thrust, pcunds
praoveller torque, pound-feet

free-stream dynamic pressure, pounds per square

foot (E-Z—E)
wing ares (9.4l =q £t on model}

alrfoil section cherd, fest

wing mean aerodynamic cherd (M.4,C. ) (1.36 % on

model)

rudder root—mean-square chorc¢ back of hinge line
(0.353 £t on model)

wing span, unless otherwise designated (7.458 1t
on model) -

rudder span along hinge line (1.508-ff on model)

aglr veloclty, feet per second
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propeller ‘dlameter (2.00 £t on model)

propeller speed, revolutions per second

mass denslty of alr, slugs per cublc foot
angle of attack of fuselage center line, dearees
angle of yaw, degrees

control-surface deflection with respect to chord
line, degress

propeller blade angle at 0.75 radius (25° on model)
effective dilhedral, degrees

rate of change of rolling-moment coefficlent with
angle of yaw (3Cy/0V)

rate of change of gawin%—moment coefficient with
angle of yaw (0C,/0V)

rate of change of lateral-force coefficient with
angle of yaw (OCy/0V¥)

Subscripts:
e elevator
r rudder
av .average
trim condition

trim

HMODEL ALD APPARATUS

The tests were made in the Langley 7- by 10-foot

tunnel, which 1s described in references 2 and 5. The
model was a modifiled %-scale model of a fighter alirplane
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and 1s shown in figure 1. No landing gear was used for
the tests. The wing was fitted with a LO- -percent-chord
double slotted flap that covsred 93 percent of the span
and was designed from data in reference L. For the flep-
neutral tests, the flap was retracted and the gaps were
faired to the airfoll contour with modeling clay. The
rear portion of the flap was deflected 30° for the single-
slotted-flap tests, and for tests with the double slotted
flap both parts of the flap were deflected 300. (See
detail of flaps in fig. 1.) For the flap-deflected condi-
tions, the gap between the inboard ends of the flap
~(directly below the fuselage) was sealed with Scotch
cellulose tape. _

A more detailled drawing of the tail assembly 1is
shown in figure 3. Thke. horigontal teil had an inverted
Clark Y sectlon and was equipped with a fixed leading-
edge slot. The reasoning behind the horizontal tail
design is treated in reference 1. When the model was
tested wlith the flaps neutral, the slot was sealed.

o
The vertlcal tail (fig. 3) was offset 1% to the left

to help counteract the asymmetry in yawing moment due
to slipstream rotation.

Power for the 2-foot-diameter, three-blade, right-
hand, metal propeller was obtalned from a 56—horsepower
water-cooled induction motor mounted in the fuselage
nose. The motor speed was measured by means of an electric
tachometer. The dimenslonal characteristics of the
propeller are given in figure l.

Rudder hinge moments were measured by means of an
electric strain gage mounted in the fin.

TESTS AND RESULTS
Test Conditions

The tests were made 1n the Langley 7- by 10-foot
tunnel at dynamic pressures of 12.53 pounds per squsare
foot for the power-on tests with the double slotted flap
and 16.37 pounds per square foot for all other tests.
These dynamlc pressures corrsespond to elrspeeds of about
70 and S0 miles per hour, respectlvely. The test
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Reynolds numbers were about 875,000 and 1,000,020, based
on the wing mean aercdynamic chord of-l.}é feet. Becguse
of the turbulence factor of 1.6 for the tunnel, effective
Reynolds numbers (for maximum 1ift coefficients) wers
about 1,100,000 and 1,600,000, respectively

Corrsctlons

All power-on data have been corrected for tare
effects caused by the model support strut. The power-
off daeta, howsver, have not been corrected for tare
effects because they have been found to be relatively
smeall and errstic on similsr models, esreclally with
flaps deflected. Jet-boundary corrections have been
applied to the angles of attack longl tudinal-force
coeffliclents, and tail-on pitching-moment coefficients.
The corrections were computed &s follows: )

Ag = 57.3 By % Cr, (degrses)

ACy = =By % CL2
6 oC

AC,, = ~57.3 \/5'-1;7T§ - 5w" %—i—rs Cy,
where o _ o | |
.ﬁw . jet-boundery-correction factor at wing (0.1125)
Bp total jet=boundary-correction factor at tall

(varies between 0.200 and O. 210)

S model wing area (9.hly sq £%)
C tunnel cross-sectional area (69.59 sq ft)

0C0n/01+ change in pltching-moment coefficient per degree
change in stablilizer setting as determined
in tests

qt/q ratio of effective dynamic pressure over the
horizontel tail to free-strean dJnamic
pressure

All jet boundary corrections were added- to the test data.
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Test Procedure -

A propeller callbration was made by measurins the
longitudinel forgce with the model at zero yaw, zero
angle of attack, flaps neubtral, and taill removed for a
range of propeller spesd. The effective thrust coeffi-
clent wes then computed from the relation _

Tc' = CX - Gx
. “(propeller operating) (propeller remocved)

.The motor torque was also measured and the propeller
efficiency computed. The results of the propeller call-
bration .{(B = 25°) eare shown in figure 5, Figure 6
1llustrates the relation between Tgt! and Cr, which is
representative of & eonstant-power operating curve for a
constant-speed propeller. For simpliclty, & straight line
variation of Teo! with Cp was used (Tg! = 0.1610L),

The propellsr speed required to simulate this thrust
condition was determined from figures 5 and 6. The
approximate amount of thrust horsepower represented is glven
in figure 7 for various model scales and wing loadings.

The value of Tg! -for the tests with the propeller
windmilling was about -0, 005,

‘At each angle of agttack for power-on yaw tests the
propsller sgpeed was held constant throughout the yaw
range, - Because the 1lift and thrust coefficlents vary
with yaw when the »ropellér sneed and angle of attac's
are held constant, the thruSu coefftcient is strictly
correct oxly at zero wFaw,.

Lateral ~s3tability derivatives: were obitained srom
pitch tests at angles of yaw of 5% by assuming a stralght-
1line varlation between these points, The effect*ve
dihedral angle was determined from the derivative Cy

Gy : .
V : .

0.0002

. 1\
by considering . Peff = '

Presentation.of Results

An outline to the filgures presenting the reqults of
the lnvestigation is given as follows. -
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Figure
ffect : d Gy :
Effect of power on Cky' an, an CYQ |
Plap neutral . . . ' T
Single slotted flap deflected I T
Double slotted flap deflected . + « « « « &« « « » 10

Increments in €, , C, 5 snd € resulting from:
W' TPy Yy
POWGI‘ e . . . . . . . . . e. o o e e e . e » 11
Flap deflection . . . ] . . . ) . . . ’ . . . . .- 12
Tall surfaces. .« « o v & « o o o o o s o o o « & o 13

. Aerodynamlce charecteristics in yaw :

Flap neutral . . . B 1 1Y
Single slotted flap deflected o s e s e . s s s s 15
Double slotted flap deflected .« « « « « « + o + o 16

Effect of - wing and fuselage modifications on
aerodynamic characteristics in yaw with ths

single slotted flap deflected . ¢ o« « ¢ « v o .+ o« 17
Rudder ceontrol chasracterlistics: |

Flap neutral ... . e v s 4 « s s o « s . 18

Single Slotted flap deflected [ ] L] . . . ‘e ] . [ ] [] 19

Double slotted.flep deflected « ¢ + + + « o « + . 20

DISCUSSION
Effsctive- Dihedral Derivative (f@wj

The variatlon of effective-dihedral derivative (Phﬂ)

with 11ft coefficlent (figs. 8 to 10) was generally smooth
for all conditions with the exception of the double-
slotted~flap configuration. The irregularity of the
curves for this conditlon is attributed to unsteady 1ift
increments of the flap on the right and left wing panels,
(See reference 1. )

Effect of power.- For all configurations tested,
except those with the ¢ouble slotted flsp, the variation
of effective dihedral with 1lift coefficient was approxi-
mately linear for power-off conditions and there was
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almost no varlation for the tail-off configurations,

With power on, however, the effective dihedral generally
decreased with increasing 1lift coefficient for both
constant power and constant thrust conditions (figs. &

to 10). Unusually large variations of effective dihedral
(14° to -25°) were obtalned with the double-slotted-flap
configuration.

The Incremental values of effective dihedral {(AC, )
resultling from a chenge from winédmilling propeller toL¢
constaent power are shown in figure 11. These data show o
that Increasing power caused a decrease in effective dihedral. .
This decresase was greater sas the 1ift ccefficient was
tncreesed except for the double-slotted-flap configuration
for which the unstsady 1lift inerements of ths flap
probably caused a different trend. Part of the decrease
in effective dihedral with power resulted from an

inerease in slipstream velocity over the trailing wing
during sidesllp, which tended to produce rolling moments
in a direction that would give s decrease in effective
dihedral. The increase in slipstream veloclty over the
wing-fuselage juncture probably megnified the wing-fuselage
Interference, which on the low-wing eirplene caused & ~~
reduction in dihedral effect (reference 5) and thus caused
an additional decreass in effective dihedrsl with power.

The reduction in effective dihedral caused by power
(model with the tsll on) ranged from 0° to 3° throughout
the 1ift range for the flap-neutral case, from 1° 4o 5°
for the single slotted flap, and from 11° to 192 for the
double slotted flan.

Effect of flap deflection.- The effect of deflecting
the single slotfed flap on eflfective dihedral is shown in
figure 12. Inasmuch as the double~slotted-flap configu-
ration was not tested at 1lift coeffieients low enough to
meke & direct comparlson with the flap-neutral condition,
the increments between single~ and double-slotted-flap
deflection ars also indlcated in figure 12 to show the.
effect of the double slotted Fflap. ' )

Deflecting the single slotted flap always produced
negative effective dihedral. Wwith the tsall on, the
reductlion of CZW caused by flap deflectlon was slightly

less. The change in effective dihedral caused by flap
deflection was almost independent of the power condition
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used. The analysis in reference 6 indicates that part
of the reduction In effective dihedrel when the flaps
are deflected can be asttributed to the swept~Lorward
positlion of the flaps.

" Deflecting the double slotted flap has an erratic
but pronounced effect on CLW. The effective dihedral

1s reduced with power con but—1s increased with power

off. Thls increase with power off is thought—to be a
result of the unsteady flow ccnditions obtalned with

the double slotted flap.

BEffect of tail surfaces.- The effect of the tall
surfaces on the effective dihedral 1s summarized in
figure 1%, The data show that the tall surfaces almcst
always contributed a posiltive dihedrsl effect; the
increment was slightly greater with the power on. It
should be noted that the rolling moment contributed
by the vertical tall 1s dependent upon the distesnce
from the X-axis (fig. 2) to the center of pressure of
the vertlcal tall. VFor a given 1ift coeffilcient,
therefore, 1t follows that the double-slotted-fleap
conditiocn would show the greatest positive increment in
CLW and the flap-neutral conditlon the leasti— Thils

trend 1s shown to cccur for the'flan neutral and for the
single slotted flap and, in the higher 1ift range, for

the double slotted flan. Similer resscning cen be followed
to explain the vsrlstion of ACZW wlth 1ift coeffliclent.

Further, inasmuch =25 the increment in C resultling
71\:!

from the tail ls & functlon of tail 1ift, 1t 1s cbvious
that, 1f the rudder deflectlon for trim at the various
angles of sldeslip were considered, A4C;, =~ would he
somewhat reduced. ¥

Effect of modifications.- In an attempt to reduce
the large loss In effectlive dihedrsl that occurs in the
flap-down power-on condltion, several modificatlions were
made to the model, tested with the single-slotted-flap
confilgursticn.

One chenge consisted in removing the flap center
sectlon beneath the fuselage, 1ts span being equivalent
to 9.7 percent of the flap span (fig,1)}., This
modification with constant power, however, gave only"
‘8lightly less negative effectlve dihedrel whereas, with
power off, 1t decreased the effective dihedral somewhat.
(See fig. ]7(&) ) The other modification consisted in
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placing a spoller beneath the fuselage as shown in
figure 17(b). Agaln no noticeable improvement was
evident for the critical constant-power condition
(fig. 17(b)).

Directional-Stability Derivative cn%)

Effect of ovower.- The effects of power on the
directional stabllity derivatlve {ang are presented
\

in figure 11. With the tall on, power always increased
the directional stabllity for any flap configuration
whereas with the tail removed, nower produced both a
small stabilizing and destabilizing tendency. The
contribution of power to Gn¢ for the model with teil ~

on varlied throughout the 1ift range from about O to
-2,0011 for the flao-neutrel configuration, -0.)010 to.
-7.00%2 with the single slotted flap and -0.000L to
-3.0017 with the double slotted flap.

The effect of the windmilling propeller was to cause _ _

a destabilizing shift of about 0,00020 in an for most

conditions. With the tail on and with the double slotted
flaps deflected, the effect was considerably greater
(see fig. 10C). o _
BEffect of flap deflection.- Deflection of the single
slotted flap was found to increase the directional
stabllity. (See fig. 12.) The data indicate that this
increase 1s augmented when power is on and further"m
increased when the tall surfaces are in place. The
contribution of ACn' due to single-slotted-flap

deflection (model wigﬁ tail on) ranges from -0.0015 to
-0.0012 with the windmilling propeller and from -0.0022

to -0.0019 for the constant-sower condition. It is

shown in reference 5 that the increase in --Cnt is
partly caused by the favorable wing-fuselage interference
on low wing designs, end is further increased by deflecting
the flaps. - o o

Deflecting the double slotted flap also lncreased
the dlrectional stability for all conditions except the
power-on condition for the model with tall on for which
a consideraeble destabllizing increment 1s shown.
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Effect of tall surfaces.- The tall surfaces,&s
expected, always provide directional staebility -an

(See fig. 13.) For the windmilling conditien, the tail
contributions remained almost constant throughout the

11ift range for the flap-neutral and single-slotted-flapn
configuretions, . With constant power, however, the
increment in Ch was found to increase as Cp 1lncreased.

ny

The increment, moreovsr, was salways greater with power
on than with nower off.

It has been shown {reference 5) that the effect of '
wing-fuselage interfererce on fin effectiveness is
favorable for low-wing designs. 4n explsnation of this
favorable interference 1s offered In reference 7. 1t
i1s sufficient to say that for a low-wirg asirplans the
vertical tail 1s mainly in a region of—stabilizing
sidewash. -

The effect of tail configuration on the charac-
teristics in yaw are contained in Fflgures 1L to 15.
Inasmuch as no rudder-frse tests were made for the
single-slotted-flap configuration, the rudder-free
characteristics were estlmated from cross plots of the
rudder-hinge-moment and yawing-mowent curves. Less
directional stability existed in all cases when the
rudder was free than when held fixed. No rudder lock
cccurred for any of the configurations tested although
such a tendency was present. It is interesting to note
that in the double-slotted-flap configuration with tail
removed, the magnitude of ;Cn\y contributed by the flap

i1s sufficient to cause a stable yawiné-moment curvs with
the vpropeller removed and, to & lesser degree, with the
oropsller windmilling. (See figs. 16(a) end {b).)

Directional Control and Trim

] Effect of vower on rudder controcl and hinge-moment
characteristics.- A summary of gome Of the principal
control and hinge-moment parameters obtained from the
results of the yaw tests (figs. 186 to 20) is given in
tablse I.
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The progressively reduced rudder effectiveness vy /06,
for the windmilling condition with single--ard double-
slotted-flap deflectlon 1s caused by the increased directional
stability, which may be attr*buted to the flaps. With
power on, the value of OVY/06, was considerably lower
than with power off for the single-slotted-flap condltion.

Tt is apparent in this instance that the increase in
directional stabllity caused by power was greater than
that caused by the lncresse in q at the tall.

For the flap-neutrel confisuration only slizht changes
occurred in the hlnge-morent parame ters bth/bw and

OCh,/38r with power. The thrust coefficlent is low for

this condition (low Cp) and therefore power offects would
also be expected to be low. For the other flan conditions,
the effect of »ower is to ircrease the values of the hinze-
moment parametars.' This effect is especially marked on
values of GCh,/Cy for the double-slotted- -f1lap condition.

Effect of nower on trim.- A factor of »nrime
importance to the pllot 1s the trlm change wﬁt power.
The dashed curve for Cvy = 0 on the yawing-moment curves
(figs. 18 to 20) indicates points on the Cn=~curve at
which the lsteral force 18 zero. The point’ at which the
curve for Cy = 0 intersects the Cp-axis glves the
rudder deflection and yaw sngle necessary to maintaln
straight flight with zero bank. The changes in ruider
deflection requlred to trim wlth the wings level when
power is applled and the corresponding changes in yaw
angle are as follows:

Flap (dgg) SLov AOririm AVepim
(deg) (deg) )
Neutral 1.2 0.3 -2 0.1
"Single slotted 9.7 2.1 _ -2%.5 6,0
"Double slotted 7e3 2.9 -28 6.5

These results show that althoush the trim changes
caused by power ere rather large, control could proba-
bly be meintained. The trim changes result from change of
twlst imparted to the slipstresir by the propellier and
are dependent upon bladevantle settin;: and other projeller
characteristics. The use of a.skewed Ehrust axis would
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provide an ideal way to reduce the magnitude of tho
directionsl trim changes.

CONCLUSIONS

Tests were conducted on a pcwered model equivped
with full-span single slotted and double slotted flaps
to investigate the effects of power, flap deflection,
and tall surfaces on the lateral stebillity and control
characteristics. The following concluslions can be drawn
from the data prescnted.

1. Effect of power:

(a) Power produced negative effective dlhedrai
which generally increased with the 1ift coefficient,

(b) Application of power increased the direc-
tlonel stsbility of the.complete mcdel., Creater
stability was reslized as the 1i1ft coefficient
increased.

2., Effect of fleps:

(a} Sinrle-slotted~flap deflectlon produced
negative effective ¢ihedral, which wus virtuslly
independent of the power condition.

(b) Deflection of the single slotted flap
nroduced posltive increments of directlonsal sta-
bility. The increase in airectional stability
wes less pronounred 2s the 1ifft coefflclient
increased.

{c) The effects cof double-slotted-flap deflec~-
tion were erratic and marked changes in both effec-
tive dihedral and directlonal stebility occurred.

3. Effect of tail surfaceé:

(a) The taill surfaces contributed vositive
effectlve dihedral except through pz2rt cf the 1ift
range in the double-slotted-flep configuration., No
conslstent varietion with 1ift ccefficlent of the
increment due to the presence of the tall existed
among the conflgurations tested.
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(b) Positive increments of directlonal stability
were provided by the taill surfaces. These lncrements
varied slightly throughout ths 1ift range for the
windmilling condition and increased with 1ift
coefflcient for thé constant-power condition.

Langley Memorial Aeronautical Labo¥*story B
National /dvisory Committee For Aderonsutics
Langley Field, Va., April 19, 1946
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TABLE I - SUMMARY CF RUDDER-CONTROL AND HINGE-MOMENT PARAMETERS

C
a de o oy 3C ?EE:
(deg)i C - ny | (Tail | O¥ | _“r
Flap | Power ex L 86, ofF) 35, W 35,
Neutral| #indmilling | 1.2 | 0.3 |-G.0010 |-0.C016 [0.0006 +0.56]-0.0020 |-0.0G055
Single :
slotted! Windmilling | 9.7 12.0| -.0011 | -.0025] .0005 | -. -.0009 | -.0048
Double , iy
slotted} Windmilling | 7.3 (2.6 -.0011 | -.C029 |-.0001 | ~.38] -.0035| -.0059
Neutral} Constant
nower 1.2 | .3| ~.0011| -.0019| .0007 | -.58| -.0019| -.2047
B3ingle | Constant |
slotted] nowsr 9.7 |2.2| -.0017] -.0095] Q005! -,31} - -.0080 -.0101
Double | Constant _ - :
slotted] power 7.3 13,1 -.001G6 | -,0053 0 -.36] -.0L40| -.0117

NaTIONAL ADVISORY
COMMITTER FOR SERCNAUTICS
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Geometric charactersiics

Wing area, g 7/f . . .. . .. S.44
MAC,F . L /.36
CY.(percentMAC) . . . . ... R6.70
Wing sectirn
e i e e NACA RRIS
(/- NACA RROF
Wing incidence,deg., . , . . . 10
25 i 1388 1
> <
216 Saaled o
Flap neufral  Singlk SIITed #ap  Double siofied Hap
Root" sections

———&.08 7D £ elevair lrr'nge "

Pigure l.~- Three-view drawing of model as: a low-wing alrplane.
All dimenslone in inches.

. | 863
58" Dihedral rust .[ S P?(%r
(Chord piane) Sealed ht}nge
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Fig. 2 NACA TN No. 1327
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Figure 2 .- System of axes and control-surface hinge moments
and deflections. Positive values of forces, moments, and
angles are indicated by arrowa. Positlive values of tab
hinge moments and deflections are in the same directions
as the positive values for the control surfaces to which
the tabs are attached.
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Fig. 4 NACA TN No, 1327
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Figure 16.- Aerodynamic characteristics in yaw of the model
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Figure 17.- Effect of model modifications on the aerodynamic
characteristics of the model as a low-wing airplane with

a full-span single slotted flap. o=9.6°; &, = 0°,
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Figure 18.- Effect of rudder deflection on the aerocdynamic
characteristics of the model as a low-wing airplane with
flap neutral. a=1.2°9,
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Figure 16.- Effect of rudder deflection on the aeradynamic _.

characteristics of the model as a low-wing alrplane
with a full-span single slotted flap. a = 9.7°.
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Figure 20.- Effect of rudder deflection on the aerodynamic
characteristics of the model as a low-wing airplane with

full-span double slotted flaps. a=7.3°.
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